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HIGH ORDER FINITE DIFFERENCE METHODS. MULTIDIMENSIONAL LINEAR
PROBLEMS AND CURVILINEAR COORDINATES

JAN NORDSTROM®* AND MARK H. CARPENTER!

Abstract. Boundary and interface conditions are derived for high order finite difference methods applied
to multidimensional linear problems in curvilinear coordinates. The boundary and interface conditions lead

to conservative schemes and strict and strong stability provided that certain metric conditions are met.

Key words. high-order finite-difference, numerical stability, interface conditions, summation-by-parts.

variable coefficient

Subject classification. Applied and Numerical Mathematics

1. Introduction. Phenomena that require an accurate description of high frequency variation in space
for long times occur in many important applications such as electromagnetics, acoustics (all cases of wave
propagation}, and direct simulation of turbulent and transitional flow; see for example [1]-[6]. Strictly stable
high order finite difference methods are well suited for these types of problems (see [7]-[16]) because they
guarantee accurate results with bounded error growth in time for realistic meshes.

Most of the development for these types of methods has considered constant coefficient problems on a
Cartesian mesh. In [17], [18] stable and conservative boundary and interface conditions were derived for
the one-dimensional constant coefficient Euler and Navier-Stokes equations on multiple domains. A similar
technique was used in [19], [20], and [21] for Chebyshev spectral methods.

In this paper we extend the constant coefficient analysis in [17], [18] to scalar multidimensional linear
problems in curvilinear coordinates including block interfaces. Related previous work includes investigations
of the metric derivatives in non-smooth meshes (see [22], [23]) and the treatment of parabolic and hyperbolic
systems in curvilinear coordinates on a single domain [14].

The rest of this paper will proceed as follows. Section 2, will give some basic definitions. Section 3
presents the 1D difference operators that form the basis of the multidimensional approximation treatment.
Section 4 defines the linear model problem and discusses well-posedness. Section 5 provides an investigation
of the discrete problem. Section 6 illustrates numerical experiments and in Section 7 we summarize and

draw conclusions.

2. Definitions. (lonsider the linear initial boundary value problem

wy, = Plet)w+dF(at) 2 e 1>0,
(2.1) w = §f(r) A ER =0,
Lew = dg(t) el (>0,

where P is the differential operator, L. is the boundary operator, © is the domain and I' 1s the domam

boundary. The forcing function 4 F', the mitial function §f. and the boundary data dg are the data of the
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problem; w denotes the difference between a solution with data f, F, g and one with data f +6f, F+46F,

g +dg.
The semi-discrete version of (2.1) is

(wy)e = Q. thw; +8F;(t) ,2; €2 ,1>0,
(2.2) w; = (Sfj V&g cQ) t= 0,
Lpw; = dg(t) 2, el (>0,

where @ is the difference operator approximating the differential operator P, § F; is the forcing function, 4 f;
the initial function, Lp the discrete boundary operator where numerical boundary conditions are included,

and dg the boundary data. It is assumed that (2.2) is a consistent approximation of (2.1).

2.1. Well-posedness and stability. There are many concepts of well-posedness and stability: see
[24]. Here we consider the following definitions.

DEFINITION 1. Problem (2.1) is strongly well posed if the solution w is unique, exists, and satisfies

t t
(2.3) |I1l’l|?z+/O lJwlffdt < 1\'cf”“’{|l<5fllé+/0 (IBF1E + ll6glIT)dt}

where K. and 1. may not depend on 6F, §f, 8g. and || - ||q and || - ||r are suitable continuous norms.

DEFINITION 2. Problem (2.2) is strongly stable if for a sufficiently fine mesh the solution w; satisfies

t t
(2.4) el [ el < K 51 + [ Q8T + gl )ae)
where Ky and 14 may not depend on §F;, 6f;, dg, and || - ||q and || - ||[r are suitable discrete norms.

DEFINITION 3. The approzimation (2.2) of (2.1) is strictly stable if the analytical and discrete growth
rales (see (2.3) and (2.4)) satisfy

(2.5) 1a < ne + O(Ax),

where Az 1s the mesh size.

2.2. Linear algebra relations. For later reference we define some useful matrix operations; see [25).

DEFINITION 4. Let A be a p x ¢ matriz, and B be an m X n matrix; then

(lU‘()B T an‘q_lB

ap_10B -+ ap_1 4B
The p x q block matriv A& B is called @ Kronecker product.  There are a number of rules for Kronecker
products; see [25]. In this paper we will make frequent use of
(A2 B)C D) = (AC) & (BD),
(2.6) (47 B8)T =T - BT,
(Ao By t=4a"t. BL

Consider the following matrices,

(2.7) B=BT >0, ¢('=CT >0, D=diay(d)> 0.



where B, (', and B & (' have the structure

BL ("L

0 0
o . | 0

BR (vR

We will need the following lemmas.
LEMMA 1. Let C' and D be the M x M matrices defined in (2.7)-(2.8). If the blocks (' C'r have

dimension r x r and the first and last v components in D are constant. then
(2.9) CD=DC=CYDCY? > 0.

Proof: A direct matrix multiplication leads to (2.9). O
LEMMA 2. Let the first and last r components Dy, = diag(d;), k = 1,.... N be constants: lct B have ¢ x ¢
blocks By, Br and C have r x r blocks (' C'r; see (2.7)-(2.8). With A= B (" and D = diag(Dy) we have

(2.10) AD=D4=A4"7"DAl? >0

if the first (Dy,...,Dy) and last (Dyx_(4—1y..... Dn) g-blocks in D are equal.  Proof: By introducing Dy =

(I, 7+ D1) with I the identity matrix, the relations (2.6) and lemma 1. the upper left corner of 4D becomes
(By - C)Dp = By - C'Dy = B o DyC =D (B ()
and
(BL o CyDy = (BY* 2 V(B 2 Dy = (B CYADL(BY R 1),

Positive definiteness follows directly from the fact that Dy > 0. O

3. The 1D difference operators. The 1D difference operators that form the basis for the multidi-

mensional difference approximations will be presented below, for more information see [17]. [18].

3.1. The discrete differentiation operator. Let {7. DI’ be the numerical approximations of the

scalar quantities u and wu, respectively. The approximation D7 of the first derivative

(3.1) PU=PIQU, u,— PT'Qu=T.. |T.|=0O(Ar™. A2")
where |T,] = Q(Ar”. Ar™) means that the approximation of the differential operator is accurate to order
m in the interior of the domain and to order n at the boundary. Typically we have n = m — 1. The

sunniation-hy-parts (SBP) operator DI’ satisfies

(3.2) (I PV)p = UnVy = U1y = (DU.V)p
where
(3.3) Yy =0TPy, P=rPT. Q+QT =D. D=diag[-1.0....0.1]

and 0 < pindal < P < pparAel. Operators of the SBP type arise naturally with centered difference

approximations: for examples see [9]. [15]. [12], [26].



In this paper we will apply the first derivative operator twice to obtain the second derivative; i.e., we

will use
(3.4) DU =D(PU), wpe — PIQP'Qu=7T.. T.=O(Az™, AzF)

despite the fact that we lose two orders of magnitude in accuracy p = m — 2 at the boundaries. The
second derivative defined in (3.4) satisfies (3.2) with V" = BDU, which is completely similar to (u, (buy)r) =

ubu,|y — (ur. bu;) obtained in the continuous case. For another type of second derivative, see [17], [18].

3.2. The discrete integration operator. The matrix P in the SBP derivative operator is a discrete
integration operator.
THEOREM 1. Let the difference operator D = P~'Q defined in (3.1)-(3.3) exists on the interval —1 <

r < 1. Then, the matriz P is an integration operator which satisfies

1
(3.5) / (uv) de = UT PDV + (DU)T PV
-1

where U,V are the projections of the continuous functions u, v onto the grid.  Proof: UTPDV+(DU)T PV =
. ;7 1

(U = (uo)|t] = [ (wv)ede. O
It is also possible to prove the following theorem.
THEOREM 2. Let the difference operator P=1Q defined in (3.1)-(3.3) exist on the interval —1 <r<l1

and be accurate to order m. Then, the matrir P is an integration operator which satisfies
1
(3.6) / we dr=UTPV +0OA™).
J-1

where U,V are the projections of the continuous functions u,v onto the grid.  Sketch of Proof: The proof
has two parts. The first part shows that (3.6) holds for general polynomials. Next, Weistrass’ interpolation

theorem (see [28]) is used to show that it also holds for continuous functions.

4. The continuous problem. The definition and specification of the continuous problem is done
with Cartesian coordinates. After the transformation to curvilinear coordinates we check that the essential

mathematical properties are preserved.

4.1. Cartesian coordinates. The two-dimensional {2D) linear problem considered in this paper is

u+Fe+ Gy = h [2y]eQ, >0
{4.1) u = f [r.y]€Q, t=0
Lu = g, [r.y]€dQ. >0,

where /i, f, g are the data of the probleni, L is the boundary operator, and

F:FI-FF", }"I =dayu, F‘v —(bll’lt_p-}-()lgu.y),
G=G'+GY. G'"=awu. GY = —(barus + basuy).

(4.2)

The coefficients ;. b;; are known functions of x,y, and t. For simplicity we have chosen Q = [r.y] €
[(—1.1] x [0, 1]; see figure 4.1. For future reference we also introduce

(4.3) d@=(ai.a2). F=(F)., ii=(ng n),

where 77 is the outward pointing unit normal on 3.

Equation (4.1) can be thought of as a model for the Euler, Navier-Stokes, or Maxwell's equations.
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Fi1G. 4.1. The computafional domain.

4.1.1. The energy estimate. Well-posedness of (4.1) requires that we can obtain an energy estimate.

Let

1 gl
(1.4) (u,v):/ / we  dedy, (u.u) = ||ul]”.
0o J-1

.1
(4.5) (u.v)psy = / (u)ewdy, (vow)pw = |Jul|fy
0

1
(4.6) (u.v)n s = / (uv)n sder, |[u||“’\5 = (u. u)J\;g||u|[:“'V”5. = (u,u)n.s
-1

denote the L4 scalar product, the L» norm. the boundary scalar products. and the boundary norms respec-
tively. The subscripts £, W, N, 9 refer to the EAST, WEST. NORTH. and SOUTH boundaries (see figure
4.1).

The energy method applied to (4.1) leads to
ull} == [(u. FT 4 2F  )g — (u. F7 4 2F )y ]

EAST-WEST
— (. GT+2GY ) — (0. GT 426GV ) 4]

NORTH-SOUTH
— [ FYy = (e FIY + (e GLY = (1 oG]+ [(w ) + (B w))

GROWTH 1 GROWTH 2
(4.7) ~ e Y)Y+ (FY oug) 4 (uy GV )+ (GY wy)].
DISSIPATION

GROWTH | (GR1) and GROWTH 2 (GR2) in (4.7) will lead to a growth or decay in ||u||?. but will not
affect well-posedness. Note that for constant coefficient problems GRI is zero. To bound [ju]{* in time. the
first. two terms must be bounded using the correct boundary conditions and the DISSIPATION (DI) must

have the right sign.

4.1.2. The dissipation. For a correct sign of DI (see (4.2) and (4.7)) the eigenvalues of B4 37 where
b by
(1.8) B = SRS
l)'._’l l)'_)';

Jt



must be positive; therefore,
bio + bay \*
(4.9) bir > 0. bos > 0. byyby — (‘—J;—l) > 0

is a requirement for well-posedness.

4.1.3. Boundary conditions. By integrating the “cross derivative” components of the first two terms

m (4.7) one obtains

1 1
B / u(F' + 2F")ttid:u—/ u(GT +2GY) bz = (bro + bor )| L]}
J0 —1

o1 -

1
—/ u((ar + (bra)y)u — 2611, )|[Hidy —/ u((az + (bay)r)u — 2banu,) |5 de.
0

-1

The term (b12 +ba1)u®|T]|} involves the point values in the four corners of the computational domain. These
point values cannot be estimated (unless they are artificially specified). Boundary conditions where the
viscous fluxes (F',GY) are specified avoid that difficulty and lead to an energy estimate; therefore one
should specify the total flux (F = F/ + FY G = G' + G") or the viscous flux at the boundaries.

Consider the first two terms in (4.7) and recall the definition (4.3). At x = %1 with 7 = (1, 0) we have

the boundary conditions

—ay(=lyt) = @-i<0 F-i = F = Fy(yt),
(4.10) ~ai(-lyt) = @-a>0 F'.@a = FV = Fy(v. 1),
' tai(+l.yt) = @-i>0 FV-i = FV = Fl(yt).

+ai(+l,yt) = @-a<0 F-7i = F = Fg(yt).
while

—ax(z.0,t) = @a-A<0 F.i = G = Gslt),
(4.11) ~as(x,0,t) = @-A>0 FV.q@i = GV = GY(z,1),
' tas(x 1t) = @-a>0 F¥.7@ = GY = GY(x.1).

+as(x,1.1) a-a<0 F-i = G = Gy(at),

are used at y = 0,1 where @ = (0, F1) . The boundary conditions (4.10), (4.11) can also be formulated in
the following more general way.
= F.i = Fq-n

0
(4.12) L by
0 = F'n = Fg-

3

Boundary conditions of the type (4.10), (4.11), (4.12) have been derived in [29] and [20] for the Navier-Stokes
equations.

Let us consider the EAST boundary in detail, and let us assume that a; is positive at y = 0, becomes
negative at y = yo and remains negative until y = 1. Inserting the boundary conditions (4.10) into (4.7)
vields

] ) Yo . .
—/ w(F' 4 2F" Npdy = —/ lay (1. y. )|u® + 2uF ) dy
0 Jo
.1 . Yo . ]
+/ ar(l,y. ) — 2uFpdy = —/ lay|u® + 2uF} dy
Yo 0
v 1 . -1 . i
{4.13) —/ lay v + 2uFpdy = — / |(zﬂu"+2u(mF£ + F): ydy,
Yo

J0



where ¢y = (1 — |aj|/a;1}/2. The requirement that a; changes sign in the manner described ahove can be
relaxed, so (4.13) is a generally valid formula. An entirely similar procedure at the other (WEST, NORTH,
SOUTH) boundaries yields the final result:

—(w. F' 4+ 2F ) = —(u, |as[u)g — 2(u, Fg)E.
(u, FT 4 2FV ) = —(u, |ay [u)w — 2(u. Fyy)w
=(

—(

)
—(‘u,Gl + 2(}‘-);\" = —(u, Jas|u)n — 2(u. (,ty"v))\r,
)

(4.14) (u, al o+ 2(?“)5 = —(u, |as|u)s = '2((1,(‘}'5)5.
where
Fp=oFg+(1—0)FY. o= —|al|/a)/2
Fy = o3Fw + (1 —03)Fy. o3 = —(1 + |a1|/a1)/2.
Gy =o5Gn + (1= 05)GN. o5 = (1 —|as|/as)/2.
(4.15) Gs=0:Gs+ (1 —a7)Gy. a7 =—(1+ |az|/a2)/2.

Inserting the relations (4.14) and (4.15) into (4.7) leads to
N I~ . )
(4.16) lullf < > —IIFl7 + GR1+ GR2+ DI,
. nr oo
I=E W N5

where

-1
jﬂ la;|u’dy f”l la|u’dy
= 1 lJ‘:l‘ W = 1.
f“ u dy fo u’dy

‘r:—1~

ne

f_ll las|u’de [_1] las|u*de

=1, s =
1 o y=1 ! 1 N
j_l uldir j_l udr

The parameters 5z, nw, yn. Ns are strictly positive if a;, a2 are zero for a finite number of points.

y=0-

Time-integration of (4.16) leads to an energy estimate of the form (2.3) if (4.9) holds. Provided that
a solution exists (can be shown by using the Laplace-transform technique or via difference approximations;
see [30] and [31]). we can conclude that the following theorem holds.

THEOREM 3. Problem (§.1). ({.10). (4.11) is strongly well posed.

4.2. Curvilinear coordinates. In this Section we consider problem (4.1) on a curvilinear domain. By

introducing the transformation t = 7,0 = w(€.7, 7)., ¥y = y(&. . 7) and 1t's inverse

(4.17) T=t, E£=E&xr.yt), n=nlr.yt),

we obtain the transformed equation

(4.18) (Ju)r + (J(E&u+ & F +EG)) e + (J(pu+ e F+,G)yy = Jh+ RIS,
where

RIS = u(J, + (J&)e + (Jne)y) + FUUIEDe + (Inedy) + GUTIE e + (Ty)y)-

=1



Using the metric relations causes the term RHS to vanish:

JE& = (xgyr —Tryy) Jye = (yerr — zeyr)
(4.19) W T =
Jne. = -y Jgy = ¢
J = ey — wqye J o= (&eny — £y77r)_1-

In this paper we will consider the steady version of (4.17), i.e., £ = &(x,y),n = n(z,y). The new

transformed problem becomes

Jur + (Fle +(G)y, = h. [, €Q, T2>0,
(4.20) u fo Enen, . r=0,
Lu = g, [€.9]€déQ r>0,

where h = Jh, f, g are the data of the problem and @ = [¢,9] € [-1,1] x [0,1]. The new transformed fluxes

‘are )
F=J(F-ve)=FI 4+ FY, Fl=aiu, FY = —[bue + bouy),

(4.21) G=JF-V)=G'+G", G'=au, GY = —[byyue + boouy),

where

ay =J&@-VE by, =JVE BVE bia = JVE- BV

(4.22) _
azs =Ja-Vn by =JVn BVE by =JVn-BVy

and B is given in (4.8).

4.2.1. The energy method. Let

1,1
(4.23) (u,v)J:/ / (wv) Jdédn, ||u||3 = (u,u);,
0o J-a
1,1 |
(4.24) (u.v):/ / (uv) dédn, |Jul)* = (v, u).
0o Jo1
1 :
(4.25) (u,v)g.w=/(ul')E,W dy, HUHQE,W:(“«“)E.WW
0
1
(4.26) (u“v)N“g:/ (wv)ys dé |lullk s = (v u)ns
-1

denote the weighted L, scalar product and norm, the L. scalar product and norm, the boundary scalar
products, and boundary norms respectively. The subscripts 7, }1, N, S refer to the EAST WEST.NORTH
and SOUTH boundaries as in figure 4.1, with &, y replaced by &, 1.

The equation corresponding to (4.7) becomes,
(lf)r = = [ F1 + 2F ) g — (0. F 4 2F" )]

EAST-WEST
— . GT+ 20" )y = (0. GT 4+ 26V )]

NORTH-SOUTH




- [(u, Fg) — (ue, FTy + (u.Gé) — (g, GI)] + [(u. h) + (h, )]
—_———

GROWTH 1 GROWTH 2
(4.27) —[(ue. FY) 4+ (F¥ ug) + (1 . GV )+ (GY L wy)] -
DISSIPATION

Precisely as in the Cartesian case, GRI and GR2 in (4.27) can lead to a growth or decay in ||u||3. but will
not affect well-posedness. The metric relations (4.19) show that in the curvilinear case too, GR1 vanishes

for constant coefficient problems. Just as in the Cartesian case, we need to assure that DI has the right sign.

4.2.2. The dissipation. Similar conditions as in the C'artesian case for positive eigenvalues also apply
in the curvilinear case; see (4.27). Thus we must show that
biotbo )
(428) b1 >0, bQQ > 0, bllbj_)'_:— (“T—l) >0
to assure the right sign on DI. The conditions (4.28) hold, since (4.22), (4.8). and (4.9) lead to 2b;; =
JVET(B + BT)VE > 0,2ba0 = JVT(B + BT)Vy > 0, and

“

bio+boy \ bro+ boy \”
bi1bas — (%) = byibao — (%) > 0.

4.2.3. Boundary conditions. Consider the first two terms in (4.27) and recall the definitions (4.3).

The outward pointing unit normal on 482 is,

- = U S FVy
{4.29) nE==x1,n)=—=. wl&n=0,1)= .
~ %3 AW
where |V&| = (/62 + €2 and |Vy| = (/n; + 7. The boundary conditions leading to an energy estimate
become
—a(=lgt) = —Ja-VELO JF-VE = F = Py,
(4.30) —ar(=l.ygt) = —Ja-veE>0 JFY.ve = FV FX-(n.1).
B +ar(+ly.t) = J@a-VeE>0 JFV.ve = FY = Flint). .
+ay(+l.gt) = Ji-VELO JF-VE = F = Fp(yt)
at £ = +1, while
—aa(60.8) = —Jda-Ny<0 JF-Vp = G = Ge&1).
(4.31) —as(E0.8) = —Ja-Sy>0 JFV.Uyp = GV = G,
) +as(E1.8) = Ja-Vy>0 JEY.Ty = GV = GL(E).
tas(E18) = Ja-Sy<0 JF-Vy = G = Ga(Ed)

should be used at 5 = (). I. The boundary conditions {4.30). (4.31) can also he formulated as in (1.12).

The same procedure as in the Cartesian case leads to the estimate
. | , ,
(4.32) e, < > —{|F1]l7 + GRI+ GR2 4 DI,
I=FE W NS

where

. 1
=0 e+ (1 ——(rl)Fl‘?. o= E(l — Jaq|/ay).

9



, . 1
Fw = o3Fw + (1 —a3)Fyy, o3= —5(1 + |aq|/ay),

N v 1 .
Gna :0‘5GN+(1—0'5)G)\:, o5 = §(l—|a2[/ag),
. ; - 1
(4.33) Gs=o0:Gs+ (1 —o7)GY, o7 = =5 (1 + Jaz|/az),
and
fol |ayjudy fol |a1|udy
e = T ——le=1. mw = F———[e=—1,
fo uidn fo udny
1 9 1 9
) J_ | las|u?dg , I las|u?de
N = ~—————|p=1., 18 = — 53— |p=0-
Joyutde oy ude

The parameters ng, g, n, s are strictly positive if a1, as are zero for a finite number of points.
Time-integration of the estimate (4.32) leads to an energy estimate of the form (2.3) if (4.28) holds.
Provided that a solution exists we can conclude that the following theorem holds.

THEOREM 4. Problem ({.20). (4.30). ({.31) is strongly well posed.

4.3. Interface conditions. Boundary and interface conditions of the flux type (see (4.10), (4.11),

(4.30), and (4.31)} require extra careful treatment; see [27] for an example.

4.3.1. Interface conditions in the curvilinear case. To apply the SAT technique [16] on the fluxes
at an interface between two blocks with different coordinate transformations and matching gridlines (see [17],
[18] for the one-dimensional treatment) requires that we identify the continuous part. Matching gridlines at

£ = &y = const implies
(4.34) (®e)1 # (e (¥ehy # (we)2. (zn)1 = (2y)2, ()1 = ()2
while we have

(4.35) (Cehi = (xe)oy (Yehr = (ye)oy ()t # (2n)2,  (Yn)1 # (yn)2

at 1 = 1o = const. The subscripts 1,2 refer to the two coordinate transformations.
Equations (4.21), (4.19), and (4.34), (4.35) immediately lead to the conclusion that

(4.36) Fi(oon.m)= Fa(€o.n. 7). Gr(&on. 7) # Gal&o.n, 7).

(4.37) Fu&omo.t) # Fal€no. 1) Gul€, o, 7) = Gal€ono. 7):
Le., F' is continuous across £ = const while GG is continuous across 7 = const.

4.3.2. Interface conditions and vanishing wave speeds. Another problem with flux-interface con-

ditions appears when the wave speed a goes to zero. Coonsider the two constant coefficient problems
e+ Fu)py =0, —L<2<0 and v+ F(v), =0, 0<2< L,

where F(v) = aw+F' (w), FY(w) = —cw,. Both problems have homogeneous outer boundary conditions

at lr| = L and zero initial data, and they are connected through interface conditions at r = (. We

10



will compare the effects of flux-interface conditions (F(u) = F(v), F* (u) = F' (v)) and variable-interface
conditions (u = v, uy = v,) on the solutions.
By transforming the problem for v on [0,4L] onto [~L,0] via the transformation x — —§, and then

replacing & with 2, we obtain

'L‘““P -+ Alj‘f - (Q".Z‘I'v t 2 0, —L S x S 0,
=0, =0, —L<r<0,
(4.38) y 0 <r <y
B_py = 0. t>0, r=-L,
Bov = 0, t>0, »=0,
where v = (u,v)T.A = diag(a, —a), and B_p v = 0 denotes the outer boundary conditions. Byy = 0

represents the transformed interface conditions
(4.39) Qu — €Uy = av + Uy, —€Uyp = +€Up, OF U=V, Up = —1Up.

We will treat (4.38) as a half-plane problem, whiclh means that we let L — o and replace the influence of
B_; by only admitting bounded solutions as » — —x.

The Laplace-transform technique applied to (4.38) leads to
a(r,s) = oy(s)exp (ki(s)r)., T(r.s) = oa{s)exp (ka2(s)r)

where s is the dual variable with respect to time and

. +a+ (a).,+s (1+ (a),)+s
K= +— —)2 4 - g = —— —)2 4~
! 2¢ 2¢ PRI e 2¢ ¢

Note that both &, and ¢ decay away from the boundary x = 0.

The interface conditions (4.39) lead to the equation E(s)& = 0 where & = (01.02)T. A well-posed

bounded solution is obtained only if det(E(s)) # 0 for #(s) > 0. The flux-interface conditions in (4.39 lead

to
(4.40) E(s) = ( TR e ) = del(E(s)) = —2ca
—€R] —€Ra
while the variable-interface conditions leads to
1 -1 . a. ., s
(4.41) . E(s) = = det(E(s)) = 24/(=)7 + -
K] Ko 2¢ €

Obviously the flux-interface conditions can lead to unbounded growth for vanishing wave speeds. because
det(E)

problem since det(E),_,, = 2\/(5/¢).

w0 = U independent of s. The variable-interface conditions. on the other hand, lead to a well-posed

A similar analysis of the flux-boundary condition au — cu, = 0 for the single domain yields det(L'(s)) =
a/2 + /(a/2)? + sc. Consequently, the problem with unbounded growth for vanishing wave speed does not

exist in the boundary condition case because det(£),_ o = /(s¢).

5. The discrete problem on a curvilinear mesh. In the rest of this paper we will consider the
transformed problem (4.20), (4.30). (4.31}). Note that problem (4.1), (1.10).(-1.11) corresponds to the special
case where 7 = (£ = » and 1) = y. For notational simplicity. we ignore the “hat” notation for the fluxes and

transformed coefficients introduced 1 (4.20)-(4.22).

11



n=1
N
WEST M j EAST
j—1
1—1 1
SOUTH
F1G. 5.1. The single-domain case in transformed space.

Let the N x N matrix P and the M x M matrix P, be the 1D positive definite matrices defined in

Section 3.1. A product av is arranged discretely (where av & AV) in the following way (see Figure 5.1):

[ A,

AV

where A; = diag(a;j). Also, the N x N

0 0
(5.2) Jp=|

0 1

0 0
(5.3) Iv=|: :

0 1

respectively. The subscripts £, W, N, S

figure 5.1). At this point we also define

(5.4) Upw = (

Jesw o 1)U,

1 Vi Vi
O Vs Via
. V=
v Vo Vintoi
An | Voo Viar |

matrices Jg, Jw, Iy and the M x M matrices Jy, Js, I, are

1 0 1 0
o Jdw = L Ie=1|: :
0 0 0 1
1 0 [ 1 0
v Js = I = :
0 0 |0 1

refers to the EAST, WEST. NORTH, and SOUTH boundaries (see

the restriction of {7 to the boundaries:

Uns = (I 7 Jns)lU.

5.1. The norms in the transformed problem. The norms and scalar-products corresponding to

(4.23)-(4.26) are

(5.5) (U V) =UT (P PV (U0, =013,
(5.6) (U VY= U (P POV, (U0 = ||U))
(5.7) (V) ew =0T Jew - PV =UEwPVew. UGy = (. U)pa

12



NORTH

n=Ile

q

WEST EAST

I

gz
P

Bt

:+]

Iy
i
|

—_

I

SOUTH

F1G. 5.2. Schematic showing J requirements necessary for MJ to be a norm: r =4 and g = 2.

(5.8) U VIns =UT (P dns)V = UL ¢Pins. Ullvs = (U 0)ns.

Obviously, the relations (5.6)-(5.8) define norms since P¢ and P, are positive definite matrices. What about
(Pe s Py)J in (5.5) 7
The metric scalar J is defined in (4.19). In matrix formulation we have

(5.9) J =diag(J;),i=1....N J; =diag(Ji;),j=1,.... M.
We need the following theorem.

THEOREM 5. Let M = P = P,. If the first and last » components in Ji are constants and the first
(Ji, ... jq) and last (jN_(q_])‘ v dn) ¢ blocks in J are equal, then M.J is a norm. Proof: Lemma 2, with
B = P:.("=PF,, and D = J, with .J defined in (5.9), leads directly to M.J =JM = MY2IAMY? >0 .

The requirements in theorem 5 are illustrated in figure 5.2 (for » = 4 and ¢ = 2) where r x ¢ values of .J are
equal in the corners and r, ¢ values of J are constant normal to an 77 = const, & = const boundary respectively.
A curvilinear transformation with such a J close to 6Q2 is called volume preserving and guarantees that AfJ
Is a norm.

Remark. The conditions in theorem 5 (i.e.. that .J must be constant in the first ¢, points normal and
adjacent to the boundary 6€2) can be thought of as theoretically ideal conditions. In practise one approaches

the ideal condition with increasing resolution on a smaoth mesh close to the boundary because

J(J) = J(0,§) = Je(0,n) ((AE) + O(AE?), i=1....q.

J(J) = J(.0) = J,(&.0)(jAD) + O(Ay?), j=1,..m

where it is assumed that J(0.j), J(¢,0) are the values of J at the boundaries. This process is illustrated in
figure 5.3. where the minimum eigenvalue of PD + DP as a function of increasing resolution is shown. The

minimun eigenvalue goes from a negative value for large Ar to a positive one for small Ar.

5.2. The single-domain problem. The discrete formulation of (1.20}. (1.30). (4.31) with the SAT

technique [16] for incorporating flux boundary conditions is
(5.10) JU+ D+ DG =h+ BC, U(0) =1,
where the continuous derivatives F¢. (7, are approximated with

(5.11) DeF = (PT Qe 1) F. Dy =l PrlQy)G



GRID REFINEMENT ON (PD +DP)

g °fl D, = 1 + 100 sin(alpha x)
[ P = 6th-order norm
g |
=10 f1
E |
E i ———— negative eigenvaiues
£ 15 | — — — - positive eigenvalues
Z 7

20 I

—4 1 I ] | I ! I ! | ] 1
100 200
Gridpoints

F1G. 5.3. Minimum eigenvalue of PD + DP as a function of Ax.

and
BC = (P71 © LTi)(F — Fg)+ (PC e 2 LSe)(FY — F)
+(PCNw O L) (F — Fw )+ (P dw & L) (FY — FYy)
+ (IS5 © Py IN) (G — GN) + (IeS6 @ PTYIN)(GY - GYy)
(5.12) + (157 © Pyl Is)(G = Gs) + (IeSs o0 Py HGY = GY).

The N x N matrix Q¢ and the A »x M matrix ¢, are defined in Section 3.1. Fluxes with subscripts £, 1, N, S

are boundary data. The matrices ¥; — Y3 will be determined below.

5.2.1. The energy method. Multiplying (5.10) from the left with /T (P; = P,), introducing the
notation M = FP; < P, and adding the transpose of the equation leads to

(115 = =0T Q¢ ¢ PYF + FT(QF & PYUL+ [UTMA + AT MU
A GR2
(5.13) + =T (P Q)G+ GT (P QDU +BT + (BT)T
B

where

BT =UT(Jg o PySi)(F = FE)+ UT(Jg o P,S)(FY = FY)



+ UT (w7 PySa)(F = Fa) + UT (Jw & PySa)(FY = Fyy)
+ UT(PeSs 0 INHG — Ga) 4+ UT (PeSe & I )(GY = GY)

(5.14) + UT (P o Je) (G = Gs) + UT(PeSg & Jo)GY = G).

In (5.13) we have assumed that the metric transformation is such that A .J i1s a norm. Note that the flux
terms with subscripts are given data.

The notations and abbreviations
(5.15) Qe +Qf =Be=Jp—Ju. Q,+Q) =B,=Jn—Js.
will be used to expand the A and B in (5.13). We obtain

A+B = —[UT(Be = P)FT 4+ 2FY)y + (FT +2F")T (B 0 P,)U/2

E-W
—[UT (P o BG4+ 268y + (G 426V (Pe 0 By U2
N-S
— {{(U.DeF"y + (De P10 = [(F. Del’) + (Dl F1]} /2
GR1
—{[(U. DGy + (D, GL U = (G DU+ (DU, G} /2
GRI
(5.16) + (Dl FY) + (FY, DeU) 4+ (D), GY) + (GY . Dy
DI

Note the close similarity of the discrete energy estimate (5.13). (5.14), (5.16) with the corresponding
continuous one: see (4.27). Just as in the contiriuous rase GR1 and GR2 will at most create an exponential
time growth. To obtain an energy estimate we must determine under what conditions the dissipation (DI} is
negative definite and which values we must assign to the matrices ¥, — Eg to obtain bounded contributions

from the boundary.
5.2.2. The numerical dissipation. The DI is
(5.17) DI = (DJI)YTMEY + (FY)TMDU 4+ (D, INTMGY +(GY)TM D,

The relationship between the gradients and the fluxes in the continuous case are given in (4.21). In matrix

formulation for the discrete case we have

FY
(5.18) | [ i } - -

where By{i. j) = bgi(&i. ;). By introducing (5.18) into (5.17) we get
[ BuM+ MBy Ba M+ MB

Biy Bipe
By Boo

Dl
DU

Dl

(5.19) DI =— ,
DU

BioM 4+ M By Basd 4+ M Boa

D¢l
NN

At this point we need to define M = P¢ . P, in greater detail: we have

i L ] L
H H!

0 0




We will need the following lemima.

LEMMA 3. If the blocks H} H§R have the size ¢ x q, the blocks H#,H,f have the size r x r, and the
matrices By in (5.18) are constant in the first ¢, r points normal and adjacent to the boundary 692, then the
dissipation DI defined in (5.19) is negative definite. Proof: Lemima 2 leads to

B M + MBy, BuM+ MB,,
Blgx’\] + A’"[Bgl B'_)QA:{ + AJBQQ

| M0 2B1y Bia+ By MYZ 0
- 0 MYV Bi2 + By, 2Bay 0 M2

|>0 0

Remark. The conditions in lemma 3 (i.e., that the matrices By, in (5.18) are constant-in the first q,7
points normal and adjacent to the boundary 6Q) can be thought of as theoretically ideal conditions. In
practise one approaches the ideal condition with increasing resolution, smooth coefficients b;; and a smooth

mesh; see the Remark on J in Section 5.1.

5.2.3. Stability. To obtain an energy estimate (given the negative contribution of the DI on the right-
hand-side of (5.16)) we must assign values to the matrices ©; — g in order to obtain a bounded boundary
contribution.

Let us start by estimating the terms at the EAST boundary. We have

BTp = —{UT[P(1/2 = SOIF! + (F))T((1/2 - =) P07}
—AUTIP = 31 = Sl FY + (F)T((1 - =F - =T) Py U7}
(5.21) = [UT P Fg + (Fe)T P,U),
where Fp = S, Fp 4+ Sy F) .
Obviously, the terms involving the viscous fluxes must be removed. This yields S» = [ — 5. By
observing that F{ = Apl/ where Ap = diag((ay)n;) (see (4.21) for a definition of a;) we obtain,
BTg = —UT[P,(1/2 = S))Ap + Ap(1/2 - ST)P,]U
(5.22) — [T P, Fe + (Fp)T P,U).
Now we choose ¥; such that (//2 — £,)Ag = [Ag|/2. This choice and an entirely similar. procedure at the

other boundaries vields
) 1, -
(5.23) (13- < > =lIFll} + GR1+ GR2+ DI,
I=E W N K’ !

where
Fp=SFp+(l,-S)Fy. Sy =(,— [AelAZY) /2,
Fy = SaFy + (ly = S3)Fy, S3=—(I,+ [Aw AR /2,
Gn = SsGn + (I = S5)GY, S5 = (1 = [An]ARY)/2

(5.24) Gs = S:Go+ (I, - S0)GY. Sr= —(I, + |As]AGY)/2,
(:—)25) S'_::]_,/—Sl. Sq:—jy—s;}, Sr,: 1;-—3;,, ng—]‘,v—ST,
and

o= LA + (JALT U]
)= 5 GRGT ‘
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The similarity of the discrete energy estimate (5.23) with the corresponding continuous one (see (4.16)
and (4.32)) implies strict stability. Time-integration of (5.23) leads to an estimate of the form (2.4) if the
DI has the right sign, i.e., if lemma 3 holds. We can conclude that the following theorem holds.

THEOREM 6. The approrimation (5.10) of the problem ({.20), (4.30). {4.31) is both strictly and strongly

stable if lemma 3 holds and ¥y — Sy are given by (5.24) and {5.25).

5.3. The 1D multiple domain problem revisited. Before we consider the 2D multiple-domain

problem. let us once more look at the 1D multiple-domain problem considered in [17]. {18].

5.3.1. Derivation of the Q-formulation for interface problems. Consider the following hyperbolic

mterface problem
(5.26) utu, =0, —1<2<0, and v +v, =0, 0<r<1
augmented with suitable initial and boundary data and the interface condition w = v at r = 0. The
straightforward approximation of (5.26) 1s
Uit PLIQLU = P on(Un = Vo)en)

(5.27) Vo+ PRlQRV = Prl(or(Vo — Ux)eo)
where U7 = (Uy. .. Un)Toen = (0,0, )TV = (Vi W) T eo = (1,0...,0)T.

The boundary terms from the left (L) and right (R) outer boundaries are ignored. The formulation
(5.27) can also be written in the following way:
(5.28) PWi+(Q+X)W =0
where W = (U, V)T, P = diag(PL. Pr).Q = diag(Qr,Qr). and

0 0

)
We can now split up @ + T into a symmetric and a skew-symmetric part as

(Q+E)—(Q+S)T+(Q+S)+(Q+S)T
2 2 '
Qsk D

—o;  +og

Skl

(5.29) )

+or —0r

Q+T=

The 2 x 2 blocks of @** and D corresponding to the nonzero elements in £ are

O = ~ 1 =2¢; op+0og

2| —(o — or) 0

s 1 0 ((TL—(TR) D_l
‘ 2 oL +or —1-—20p

In the sequel. the “tilde™ sign will indicate the 4 x 4 block that couples the solutions in the left and right

domains. Equation (5.28) now hecomes

(5.30) P+ Q% + D) =0.

In [17] it was shown that (5.27) is conservative if og = o, — 1. By introducing this condition in Q**F and D

we obtain the final form of the difference operator

. N B oot
) o _4_1 0}. - [_1 1}.



where 0 = 1/2 -0y
The formulation (5.30), (5.31) hereafter referred to as the Q-formulation is a rearranged form of the orig-
inal formulation (5.27). However, the Q-formulation simplifies and even extends the possibility to formulate

suitable penalty terms for second order derivatives.

5.3.2. The Q-formulation for advection-diffusion interface problems. Consider
{5.32) u+ Flu)y =0, -1<2<0, and v+ Fv), =0, 0<x<1

where F{w) = a(r,t)w — ew, augmented with suitable initial, boundary, and interface conditions. An

approximation of {5.32) using the Q-formulation is
(5.33) PWe + (@ )AW) — €(Q** + Da) P~HQ™ + D3) = DIW

where W = (I, V)T and P = diag(Pr, Pr). The matrix A has the values of a(x;,t) on the diagonal. The

operator @** is defined in the previous Section, and

(5.34) D; :0’,-[ bl J L i=1,23
-1 1
as n (5.31). The dissipation D, is formulated as acting on W, which is a more general formulation that
includes penalty on the flux (oy = 0a(0,t)) as well as penalty on the variables.
We can now prove
THEOREM 7. The approrimation (5.33), (5.34) of the problem (5.32) with the choices

(53-3) (2] S U, 02 = 0, o3 = 0

is conservative and stable.

Proof: The energy method applied on (5.33) leads to

W7 = (DW, AW) — (D(AW), W) — 2¢(DW, PW) — WT BAW — 2¢DW) 41T

GR1 DI BT

where DWW = P=1Q**W and the interface terms IT are defined as

DWW

T
2D, +26D'_)P_1D3 (Da — Ds3)
((DQ - D3) 0

W
{5.36) IT = { '

w }
PW |
0

The growth (GR1), the -dissipation (DI} and the ordinary boundary terms (BT) match the terms in the

0

corresponding continuous estimate perfectly. The choices (5.35) makes the term IT maximally negative
definite and leads to stability. The approximation (5.33) can now can be written

(5.37) PW, 4+ Q™ (AW — cPTIQ™ W) = DWW,

which leads to conservation. O
It remains to identify the penalty terms and corresponding interface conditions and find out whether

{(5.37) 1s sufficiently accurate. The equation

P+ QAW = ePTIQI) = (D +(Q — QX)W + «(QFP'Q* — QP 1Q)WV

18
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FI1G. 5.4. The multiple domain mesh in transformed space.

is a formulation of (5.37) in the usual penalty form. Obviously, the penalty terms (denoted by PT) indicate
that the one-sided first and second derivatives are replaced by first and second derivatives involving the
adjacent domain, and that dissipation 1s introduced via Dy.

By introducing

1 -1

—(201 + a) 0
0 (200y — a)

QSk_Q:A. :&:—.1[1 —1:l‘ ;\:

we get PT = AAW 4+ ¢(A(P~'QW) + Q** AW); this result shows that the corresponding interface conditions

are © = v and u, = v,. Also, because
Ao = (0,007, A(P7IQo) = (O(AL L AxiT Y. (AT A )T

where ¢ is a smooth function and r is the order of the approximation at inner points, the approximation

(5.37) is accurate enough.

5.4. The 2D multiple-domain problem. In this Section, an interface at £ = 0 with matching
gridlines (see Figure 5.4) is considered. Matching gridlines implies that the number of points in the
direction (M) is the same on both sides of £ = 0. We will also assume that P,)L = P,,R = P,. which implies
that Q,’; = Qf = (2,,. Note that, in general, the difference operators DfL, DfR can be different in the left and
right domains and that A&y # Afg and Ny # Np.

A multiple-domain Q-formulation of the problem (4.20), (4.30). (4.31) 1s

(5.38) JWe+ DEFF + DyG =MD SPY)W +h+BC, 1W(0)=f

where 1V = (I7, V)7 The solutions in the left (L) and right (17} domains are denoted respectively by (" and

17, and

(5.39) DF =MTNQE Py Dy =M (P Q)

In (5.38), BC denotes the boundary conditions in (5.10) at the NORTH, EAST, SOUTH. WEST boundaries
in penalty form. h is the forcing function, f the initial data. and F = T+ 'V (v = (! + (i* the fluxes
wliere

(5.10) ieof "= W0 FY = —(BuDEFW + BraDyIv),



Gl = AW,

7V = —(Bu DEFW + Bay D, W).

The remaining definitions and notations used in (5.38) are Qg" = Q¢ + A,

L Mmoo a0 o [eF o
(5-42) M= [ 0 Mg } e R ] C Q= Qr
[ 0 0 ] 0 0
(5.43) A= A D= b
0 0 | 0 0
(5.44) P—-PEL 0 A1 1 -t e -1
o Tlo BRI T2 ] T |

The matrix coefficient ¥ will be determined by stability requirements.

5.4.1. Conservation. The Q-formulation automatically leads to conservation:

THEOREM 8. The approrimation (3.38) of ({.20), (4.30), (4.31) is conservative.

Proof: Let h = BC = 0. Multiplying (5.38) with the integration operator ¢T Af where ¢ is smooth, and
observing that QE" = -—(Qg‘“)T + B, Qy = —Q,{ + By, (Bg, By, are defined in {5.15)) leads directly to

" MJIW, — (DFF¢)TMF — (D,0)T" MG + 6T (B¢ © P,)F + 67 (P: @ B,)G = 0.

The approximation (5.38) is conservative; i.e., it reverses the process of differentiation (second and third

terms above) and leaves information only at the boundaries (fourth and fifth terms). O

5.4.2. Stability. In this Section we will prove the following theorem.

THEOREM Y. The approrimation (5.38) of the problem ({.20), (4.30), (4.31) is both strictly and strongly
stable if theorem 6 holds and LP, + P,X < 0.

Proof: The energy method applied to (5.38) yields

d Y '
(5.45) E(uwu;) = GRI1 + GR2 + DI+ BTg + BTw + BTx + BT +IT

where it is assumed that M.J is a norm: the requirements are given in theorem 5.

BTg + BTw + BTx 4+ BTs are exactly the same as in the single domain case (see (5.24)), while the D¢
operator in (:R1, GR2, and DI is replaced by ng defined in (5.39). Strict and strong stability of (5.38)

follows if

The boundary terms

(5.46) IT=W"D (TP, + P,S)I <.

Because D > 0, we need ©P, + P, ¥ < 0. O
Remark. Because P, > 0, © < 0 with the first and last » elements in ¥ being constants would satisfy

condition (5.46).

6. Numerical experiments. In the calculations below, we have used the fourth- and sixth-order

schemes reported in [17] in space and a five-stage fourth-order RK scheme [32] in time.
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Fi1G. 6.1. Instability due to vanishing wave speed and flur interface conditions.

6.1. Vanishing wave speed. For problems with a realistic geometry, one will frequently encounter zero
wave speed somewhere in the field due to the variation of the metric coefficients, the variable coefficients. or
(for nonlinear problems) the solution. This difficulty (see Section 4.3.2) particularly severe in one dimension.
is exemplified in the calculation of Burger’s equation shown in Figure 6.1.

The instability that develops close to zero wave speed when using a penalty on the fluxes at the interfaces
is evident. With interface conditions applied on the variable instead of the fluxes, the instability disappears.
Also, if one scales the problem such that {7 varies between 1 and 3 instead of 0 and 2 one can use flux
interface conditions without any sign of instabilities. This anomalous behavior associated with a vanishing
wave speed oceurs with other numerical schemes, and is typically suppressed by adding dissipation (e.g. the

“Entropy fix" used with Roe solvers}).
6.2. Error growth due to varying coefficients. Consider the following 11 test probleni,

w+F, = 0. [rylefd. >0

(6.1)
u o= f. [eyfeQ. =0

on the 2D domain Q =[x, y] € [0.1] x [0.1]. The variables. fluxes and initial data are
(6.2) . u o a(r)ny = s:m (2mr) ‘
b(a)us sin (27r)

Ua
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Fi1G. 6.2. The error in the growth rate for different transformations.

The problem (6.1) is I-periodic in y and has
(6.3) w1 (0,9.8) = aua(0,y.1),  us(l,y.t) = Buy(1,y. 1),

as boundary conditions in the r-direction.

By introducing a 2D curvilinear mesh we obtain

Jur + (Fye +(G)y = 0 [E,9]€eQ, >0

fo Eneq, =0

where F' = J&F.G = Jn.F and Q = [€.9] € [0,1] x [0,1]. The problem (6.4) has the same boundary

conditions as (6.1).

(6.4)

u

Il

6.2.1. The energy growth in 1D. The energy growth for the 1D (y = 0,1, = 0) version of (6.1)-(6.4)

with
(6.5) a=l+4er, b=—l+ex, a=1, 3=/ {1+6¢/(l-¢)
leads to {[u]lf = —e||u||*>. The growth rate —e/2 corresponds to a single eigenvalue on the real axis in

the continuous spectrum. Figure 6.2 shows the error in the sixth-order numerical approximation of this
eigenvalue for different transformations (x = x(€)). Figure 6.3 shows the convergence (in an Lo sense) of the
seven eigenvalues with most accurately converged real parts. The convergence rate in both Figures 6.2 and

6.3 1s at least 6.
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Fig. 6.3. The error in the growth rate for varying wave speeds.

Even though the resolved eigenvalues (and eigenvectors) converge at the theoretical rate (see Figures 6.2-
6.3), there are unresolved eigenvalues and eigenvectors that can generate difficulties. In Figure 6.4, the least
resolved eigenvector corresponds to an eigenvalue with a negative real part (-4.6529E-03) significantly more
to the right of the analytical value (-7.5000E-03) than could be expected by the order of the approximation.
These unresolved eigenvalues and eigenvectors may generate extra large energy growth, as shown in Figure
6.5. The growth varies with the initial condition. Note that the extra energy growth for a uniform mesh

can be present only for varyving coefficients because otherwise GR1 = (F. D, ') — (D, F.I') = ().

6.2.2. The energy growth in 2D. The energy growth for the 2D continuous problems (6.1). (6.4)
is identically zero with ¢ = 0 in (6.5); i.e., the L, norm of the solution remains constant in time. In
the semi-discrete case, the energy growth is given by (5.45) where (GR2 = DI = 0 and the introduction of
boundary conditions (BTy) and interface conditions (I'T) leads to damping. Possible error‘growth, see (5.16),
is provided by,

(6.6) GR1 = =[([". D¢ F) = (DU F)) = [(U. D, G) = (D7)

only. For a linear mapping where the metric coefficients are constants (see Figure 6.6) we obtain D¢ F =
DU =MD DG = DAl = Ao Dyl which vields GR1 = 0. The error growth is shown in Figure
6.7. The calculations are fourth-order accurate in time. Note that there s an absolite bound on the error.

In a nonlinear mapping {see Figure 6.8) the truncation errors in the metric calculation, and cousequently

also in the caleulation of the fluxes. leads to GR1# 0, which in turn can generate error growth (see Figure
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FiG. 6.4, Eigenvectors related to two most and least resolved eigenvalues.

6.9}. These calculations also are fourth-order accurate in time. Note the enormous time scale in Figures 6.7,
and 6.9. A

6.3. Navier-Stokes calculations. We consider here a 1D viscous shock propagating in accordance
with a Mach number of 2.0 and a Reynolds number 150 over a 2D domain. The exact solution of the
Navier-Stokes equation for this case can be found in [33]. At the artificial boundaries, including the circular
region in the middle, we impose flux boundary conditions by using the penalty formulation on the fluxes
with exact data from the analytical solution. At the interfaces we impose interface conditions by using the
penalty formulation on the variables.

In Figure 6.10, the density and grid for the propagating shock is shown. The shock travels from the lower
left corner to the upper right corner and has almost passed out of the computational domain that consists of
12 blocks. The sixth order scheme and 24 gridpoints were used in each sub-domain. The local density errors
are shown in Figure 6.11. The grid refinement study in Table 6.3 indicate between fifth- and sixth-order
accuracy in an L2 norm, consistent with the theory in [34], [35], since we have fifth order accuracy at the

boundaries and interfaces (see (3.4)) and relatively coarse grids.

7. Summary and conclusions. We have analyzed boundary and interface conditions for high or-
der finite difference methods applied to multidimensional linear problems in curvilinear coordinates. The
investigation focused on the effect of variable coefficients.

A problem with a norm as a function of the Jacobian was analyzed. Boundary and interface conditions
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F1G. 6.5. Ertra growth due to unresolved features and initial conditions.

TABLE 6.1

Twelve subdomains, sivth-order explicit; CFL = 0.3,

Wave speed | 49/65 | 65/97 | 97/129 [ 120/193 |

-0.25 | -4.610 | -4.640 | -4.722 | -4.722
0.00 | -5.115 [ -4.986 | -4.538 [ -4.657
0.25 | -5.1565 | -5.253 | -5.179 [ -4.952
0.50 | -5.331 | -5.401 | -5.467 | -5.327
0.75 | -5.523 | -5.514 | -5.590 | -5.56D
1.00 | -5.635 | -5.622 | -5.659 | -5.719

average | -5.228 | -5.236 | -5.193 | -5.196

in both flux and variable formulations have been investigated. Flux boundary conditions lead to energy
estimates whereas flux interface conditions lead to difficulties if the wave speed approaches zero.

A new and simplified so called Q-formulation of the penalty method was derived at interfaces. The
Q-formulation simplifies and extends the formulation and implementation of derivative conditions in hoth
one and two dimensions at interfaces.

It was shown that varying coefficients can cause unbounded error growth via the truncation errors
even though the boundary and interface conditions are implemented in a stable and dissipative way. The

error growth may be large due to unresolved features in the solution. Numerical calculations confirmed the
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theoretical conclusions.
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